

INTERNAL COMBUSTION ENGINE (ICE)

Aashique Alam Rezwan Lecturer, Dept. of Mechanical Engineering, BUET <u>http://teacher.buet.ac.bd/aashiquear</u>

Internal Combustion Engine

What does Combustion signifies?

Internal Combustion Engine

Internal Combustion Engine

Internal Combustion Engine

External Combustion Engine

History of ICE

- Most of the very earliest internal combustion engines of the 17th and 18th centuries can be classified as atmospheric engines
 - A single large piston and cylinder
- The first fairly practical engine was invented by J. J. E. Lenoir on about 1860
 - Power up to about 4.5 kW (6 hp)
 - Efficiency up to 5%
- In 1867 the Otto-Langen engine with efficiency improved to about 11% was introduced
- In the 1880s the internal combustion • engine first appeared in automobiles
- By 1892, Rudolf Diesel had perfected his compression ignition engine 4/24/2013

Lenoir Engine

Applications of ICE

- - Automobiles
 - Trucks
 - Locomotive
 - Aircraft
 - Marine
 - Power Generation

Classifications

Four Stroke Engine

Two Stroke Engine

Classifications (contd.)

Spark Ignition Engine

Compression Ignition Engine

Four Stroke SI Engine

- 1. Intake Stroke
- 2. Compression Stroke
- 3. Power Stroke
- 4. Exhaust Stroke

4/24/2013

Two Stroke SI Engine

Compression Stroke
Power Stroke

Basic Engine Component

Piston and Connecting Rod

Crankshaft

Cam, Rocker Arm & Valve

Other Type of ICEs

Gas Turbine

Other Type of ICEs

Rotary Engine (Wankel Engine)

Thermochemistry of Combustion

- Fuel \rightarrow Hydrocarbon $\rightarrow C_{\alpha}H_{\beta}O_{\gamma}N_{\delta}$
- Air \rightarrow Oxygen + Nitrogen + Other Gases \rightarrow O₂ + 3.76 N₂

Reaction: $C_{\alpha}H_{\beta}O_{\gamma}N_{\delta} + a_{s}(O_{2} + 3.76 N_{2}) = n_{1}(CO_{2}) + n_{2}H_{2}O + n_{3}(N_{2})$

 $a_s = stoichiometric molar air-fuel ratio$

 $A_{s} = \text{stoichiometric air-fuel ratio} = \frac{mass of air}{mass of fuel}$ $= \frac{28.85(4.76 a_{s})}{(12\alpha + 1.008\beta + 16\gamma + 14\delta)}$

Combustion (contd.)

Fuel	Chemical Formula	Μ	A _s	a _s
Methane	CH_4	16.04	17.12	2
Propane	C_3H_8	44.09	15.57	5
Gasoline	C ₇ H ₁₇	101.21	15.27	11.25
Diesel	$C_{14.4}H_{24.9}$	198.04	14.30	20.63
Methanol	CH ₄ O	32.04	6.43	1.5
Hydrogen	H_2	2.02	34.06	0.5

The fuel-air equivalence ratio

$$\Phi = \frac{A_s}{A}$$

- lf
- $\Phi < 1 \rightarrow$ Lean Mixture
- $\Phi = 1 \rightarrow$ Stoichiometric Mixture
- $\Phi > 1 \rightarrow$ Rich Mixture

Websites:

http://www.animatedengines.com/

THANK YOU